Mean oscillation, weighted Bergman spaces, and Besov spaces on the Heisenberg group and atomic decompositions
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملErratum to: Atomic and molecular decompositions of anisotropic Besov spaces
We give a corrected proof of Lemma 3.1 in [1]. While the statement of [1, Lemma 3.1] is true, its proof is incorrect. The argument contains a serious defect which can not be easily corrected. The inequality that appears in [1] before (3.5) is not true. If this inequality was true, then we could conclude that, even for a non doubling measure μ, (3.5) was also true. But there exist some non doubl...
متن کاملUnivalent Interpolation in Besov Spaces and Superposition into Bergman Spaces
We characterize the superposition operators from an analytic Besov space or the little Bloch space into a Bergman space in terms of the order and type of the symbol. We also determine when these operators are continuous or bounded. Along the way, we prove new non-centered Trudinger-Moser inequalities and solve the problem of interpolation by univalent functions in analytic Besov spaces. Introdu...
متن کاملOperators on weighted Bergman spaces
Let ρ : (0, 1] → R+ be a weight function and let X be a complex Banach space. We denote by A1,ρ(D) the space of analytic functions in the disc D such that ∫ D |f(z)|ρ(1 − |z|)dA(z) < ∞ and by Blochρ(X) the space of analytic functions in the disc D with values in X such that sup|z|<1 1−|z| ρ(1−|z|)‖F ′(z)‖ < ∞. We prove that, under certain assumptions on the weight, the space of bounded operator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1991
ISSN: 0022-247X
DOI: 10.1016/0022-247x(91)90243-s